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Three-dimensional tidal sand waves
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The process which leads to the formation of three-dimensional sand waves is
investigated by means of a stability analysis which considers the time development of
a small-amplitude bottom perturbation of a shallow tidal sea. The weakly nonlinear
interaction of a triad of resonant harmonic components of the bottom perturbation
is considered. The results show that the investigated resonance mechanism can trigger
the formation of a three-dimensional bottom pattern similar to that observed in the
field.

1. Introduction
The bottom topography of many shallow tidal seas is often characterized by the

presence of periodic morphological patterns of different spatial scales which range
from a few centimetres (ripples) to tens of kilometres (sand banks) (Sleath 1984;
Belderson, Johnson & Kenyon 1982). The sand waves are medium-scale bed forms,
being characterized by wavelengths of the order of hundreds of metres. Sometimes,
the sand waves are almost two-dimensional, at other times, these bottom patterns
turn out to be three-dimensional and regular enough to identify a longitudinal and
a transverse wavelength. Figure 1 (adapted from Knaapen et al. 2001) shows an
example of a three-dimensional bottom topography where three-dimensional sand
waves are superimposed on long bed waves and sand banks. A qualitative analysis of
the bottom topography shows that the crests of the sand waves are almost orthogonal
to the local tidal current. Moreover, their wavelength turns out to be a few hundred
metres and the ratio between the longitudinal wavelength (the wavelength in the
direction of the tidal current) and the transverse wavelength is of order one.

In the last decade, in order to investigate the mechanism which gives rise to sand
waves, theoretical analyses have been developed which are based on a linear stability
approach and consider the time development of bottom perturbations of ‘small’
(strictly infinitesimal) amplitude (see e.g. Hulscher 1996; Gerkema 2000; Besio et al.
2003, 2006). Previous studies of sand wave appearance often assume the tidal flow
to be unidirectional and consider two-dimensional bottom perturbations, with crests
orthogonal to the direction of the tidal current. The results obtained allow us to
identify the conditions leading to the appearance of two-dimensional sand waves and
to predict the wavelength of these bottom forms. However, in order to explain the
appearance of three-dimensional bottom forms like those shown in figure 1, it is
necessary to consider not only the growth of three-dimensional bottom perturbations,
but also the nonlinear interaction of the different harmonic components of the
bottom perturbation. In the past, an analysis which considers the time development of
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Figure 1. Bottom topography measured in the Noordhinder area, North Sea (adapted from
Roos 2004 after Knaapen et al. 2001). The area of the measured bathymetry has a length of
about 5 km and a width of about 2 km and the tidal current oscillates approximatively from
left to right of the figure and vice versa. The water depth increases from light to dark grey.

three-dimensional bottom perturbations of the sea bottom and their possible inter-
action was performed by Vittori & Blondeaux (1992) to investigate the mechanism
which gives rise to the brick-pattern ripples observed at the bottom of sea waves
(Sleath 1984). The analysis was revisited by Roos & Blondeaux (2001) to study the
so-called tile ripples (Allen 1984).

To explain the appearance of three-dimensional tidal sand waves, we investigate
the time development of three-dimensional bottom perturbations of the flat bottom
of shallow seas forced by elliptical tidal currents. The analysis follows the main idea
of Vittori & Blondeaux (1992) and considers the weakly nonlinear interaction of three
harmonic components of the bottom perturbation. The first component is a bottom
waviness characterized by crests orthogonal to the major axis of the tidal ellipse,
which is supposed to be aligned with the x-axis, and by a longitudinal wavenumber α.
The other two components have a longitudinal wavenumber which is equal to α/2 and
opposite non-vanishing transverse wavenumbers γ and −γ , respectively. However,
whereas in Vittori & Blondeaux’s analysis (1992) the investigated bed forms (ripples)
have a wavelength of O(10 cm) and affect only a thin boundary layer close to the
bottom where the flow regime is assumed to be laminar, in the present case, sand
waves have a length scale larger than the local water depth and affect the whole water
column where a turbulent flow is present. Therefore, different hydrodynamic and
morphodynamic models are introduced which require different solution procedures.
It follows that in Vittori & Blondeaux (1992), the linear analysis gives rise to a range
of unstable wavenumbers which tend to vanish as the parameters of the problem
tend to their critical values. On the other hand, in the present case, a finite range
of unstable wavenumbers exists because the critical conditions are given by the
disappearance of the sediment transport rate. This result implies that a somewhat
heuristic approach should be followed to work out the solution. To keep the analysis
as simple as possible, we introduce a constant eddy viscosity, to close the turbulence
problem, and a simple sediment transport predictor which relates the amount of
sediment transported by the tidal current to the fluid velocity close to the bottom, to
quantify the sediment transport rate.

The procedure used in the rest of the paper is as follows. In the next section, we
briefly describe the main ingredients of the hydrodynamic problem and introduce the
sediment transport parameterization. In § 3.1, we determine the basic flow and study
the linear interaction of the tidal current with an arbitrary bottom perturbation.
Then, in § 3.2, we investigate the weakly nonlinear resonant interaction of a triad of
harmonic components of the bottom perturbation and we determine the conditions
leading to the appearance of bottom configurations similar to those observed in the
field and shown in figure 1.
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2. Formulation of the problem
A shallow sea of small depth h∗ is considered and a Cartesian coordinate system is

introduced such that the x∗- and y∗-axes are horizontal with the x∗-axis aligned with
the major axis of the tidal ellipse and the z∗-axis is vertical pointing upwards with
the origin at the still-water level (hereinafter a star denotes dimensional quantities).
The seabed is supposed to be made of cohesionless sediment of uniform size d∗ and
density ρ∗

s . To simplify the problem, only a tidal constituent of angular frequency ω∗

is considered.
The hydrodynamics is described by continuity and momentum equations. The

flow regime is turbulent and viscous effects are neglected. An exhaustive analysis
of turbulence properties in tidal currents is provided in Soulsby (1983). Field
measurements show that the Boussinesq hypothesis can be safely used to model
Reynolds stresses, and a scalar kinematic eddy viscosity ν∗

T can be introduced which
is then assumed to be constant. A time-independent eddy-viscosity model provides
a fair description of the phenomenon because it fails mainly at flow reversal, when
the tidal current is very weak and the transport of any quantity, and in particular of
sediment particles, tends to vanish (Gerkema 2000). The constant value of the eddy
viscosity ν∗

T is obtained following Besio et al. (2003), i.e. by equating the constant
value of the eddy viscosity to the depth-averaged value of an empirical parabolic
eddy-viscosity distribution. It turns out that ν∗

T = kU ∗
0 h∗

0/(6C), where k = 0.4 is the
von Kármán constant, U ∗

0 is the maximum value of the depth-averaged velocity
during the tidal cycle, h∗

0 is the average water depth and C is a friction factor, which
depends only on the dimensionless roughness size z∗

r /h∗
0, since the Reynolds number

of the flow is assumed to be large. Standard formulae for steady currents can be used
to evaluate C, e.g. C = 5.75 log10(11h∗

0/z
∗
r ). A constant eddy-viscosity model provides

an approximate, but still acceptable, description of the flow, provided the no-slip
condition at the bottom is replaced by a partial slip condition (Gerkema 2000).
Finally, we neglect Coriolis effects, since they play a major role in the process which
leads to the formation of sand banks, controlling the orientation of their crests with
respect to the tidal ellipse, but they can be safely neglected in the study of sand wave
dynamics (Gerkema 2000). On defining the following dimensionless variables

(x, y, z) =
(x∗, y∗, z∗)

h∗
0

, t = t∗ω∗, v = (u, v, w) =
v∗

U ∗
0

=
(u∗, v∗, w∗)

U ∗
0

,

p =
p∗

�∗ω∗h∗
0U

∗
0

, (2.1)

(ρ∗ is the sea water density, t∗ is time, (u∗, v∗, w∗) are the velocity components along
the x∗-, y∗-, z∗-axes, p∗ is pressure), the flow equations become

∇ · v = 0,
1

r̂

∂v

∂t
+ (v · ∇) v =

g∗h∗
0

U ∗2
0

k − 1

r̂
∇p + Δ̂∇2v, (2.2)

where k is the unit vector along the z-axis and g∗ is acceleration due to gravity. In
(2.2), two dimensionless parameters appear:

r̂ = U ∗
0 /(ω∗h∗

0), Δ̂ = k/(6C). (2.3)

The parameter r̂ can be interpreted as the ratio between the amplitude of horizontal
fluid displacement and the local depth, while Δ̂ is a bottom friction parameter. The
hydrodynamic problem is then complemented by appropriate boundary conditions.
Following Besio et al. (2006), we introduce the rigid-lid approximation and, at the
free surface described by z = 0, we force the pressure to be equal to the atmospheric
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pressure and the vanishing of the shear stresses. At the sea bottom, the constant
eddy-viscosity assumption requires a partial slip condition

∂u‖

∂n
= su‖ at z = −h, (2.4)

where u‖ is the velocity evaluated at the bottom and parallel to it and n is the
coordinate normal to it. Moreover, h = h∗/h∗

0 is the dimensionless local water depth
and s = s∗h∗

0 is a stress parameter which is fixed by forcing the shear stress acting
on the bed to be equal to ρ∗(U ∗

0 /C)2. It turns out that s = 6/(kC − 2). Finally, the
velocity component normal to the bottom should vanish

v · ∇h = 0 at z = −h. (2.5)

The morphodynamics is governed by the sediment continuity equation which simply
states that convergence (or divergence) of the sediment flux must be accompanied by
a rise (or fall) of the bed profile. A simple analysis of the different terms appearing in
the sediment continuity equation shows that the bottom changes taking place during
the tidal cycle are quite small and, to observe significant variations, it is necessary to
wait a large number of tidal cycles. In other words, the bottom profile significantly
changes on a time scale (the morphodynamic time scale) which is much longer than
the hydrodynamic time scale (the tide period) and ∂h/∂t can be neglected in (2.5).
If the small oscillations of the bottom profile taking place during the tidal cycle
around the mean position are neglected, it is possible to consider the sediment

transport rate (Q
∗
x, Q

∗
y) per unit width averaged over the tide period and to force the

sediment balance on the net flux of sediment. This procedure leads to

∂h

∂T
=

∂Qx

∂x
+

∂Qy

∂y
, (2.6)

where (Qx, Qy) = (Q∗
x, Q

∗
y)/

√
(ρ∗

s /ρ
∗ − 1)g∗(d∗)3 are the instantaneous dimensionless

volumetric sediment transport rates per unit width in the x- and y-directions,
respectively, and an overbar denotes the time average over the tide period. Moreover,
in (2.6), the slow morphodynamic time scale,

T = t∗
√

(ρ∗
s /ρ

∗ − 1)g∗d∗3/
[
(1 − por )h

∗2
0

]
, (2.7)

is introduced. In (2.7), por is the sediment porosity. To estimate (Qx, Qy), we use a
formula, similar to that used in previous studies of sand wave appearance, such that
the sediment flux depends on the horizontal fluid velocity ub = (u, v, 0) evaluated at
the averaged sea bed

(Qx, Qy) = Q(|ub| − uc)
3(ub/|ub| − β∇h)H (|ub| − uc), (2.8)

where H indicates the Heaviside step function, uc is the critical value of the velocity
such that for |ub| smaller than uc no sediment moves and

(
Qx, Qy

)
vanishes. The

constants Q, uc and β can be estimated by comparing (2.8) with standard empirical
sediment transport predictors. In particular, in the present study, the following values
have been used which have been fixed comparing (2.8) with Meyer-Peter & Muller
formula and comparing the slope effects with those suggested by Seminara (1998),

Q = 8

[√
ψr̂

C

(
1 +

2

3c1(2 + c1)

)]3

, uc = c2

C

r̂

√
0.05

ψ
, β = −0.15C2

ψr̂2
, (2.9)
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where c1 = −1 +
√

1 + 2/s, c2 = 3c1(2 + c1)/[3c1(2 + c1) + 2]. Moreover, in (2.9), the
mobility number ψ =(ω∗h∗

0)
2/[(ρ∗

s /ρ
∗ − 1)g∗d∗] is introduced. Let us point out that,

for fixed values of sea and sediment characteristics and considering a semi-diurnal
tide, the constants Q, uc and β depend only on the parameter r̂ , which is a measure
of the strength of the tidal current and turns out to control the stability of the bed
configuration.

3. The time development of bottom perturbations of small amplitude
Small perturbations of the flat bottom are considered and the bottom profile can

be thought as being described by the superposition of different spatial harmonic
components.

3.1. The perturbation time development: the linear regime

In the linear regime, each component of the bottom perturbation evolves
independently from the others and the problem can be solved for the generic spatial
component

h = 1 − ε
[
A(t)ei(αx+γy) + c.c.

]
, (3.1)

where εA(t) is the dimensionless amplitude of the generic component which is periodic
in the x- and y-directions with wavenumbers α and γ , respectively, and ε � 1. The
small value of ε allows for the solution of the hydrodynamic problem formulated in
§ 2 to be expanded in the form

(u, v, w, p) =

(
u0, v0, w0,

√
g∗

ω∗
√

h∗
0

P0

)
+ ε[(u1, v1, w1, r̂P1)A(t)ei(αx+γy) + c.c.] + O(ε2),

(3.2)
where the dynamic pressure P = p − g∗z/(U ∗

0 ω∗) is introduced. Then, assuming that
the averaged water depth h∗

0 is much smaller than the length L∗ of the tidal wave
and neglecting terms of order h∗

0/L
∗, the local tidal flow over a flat bottom can be

determined in the form

(u0, v0, w0) =
|λ1|(2c3 cosh(λ1z) − i)

2|2c3 sinh λ1 − iλ1|

(
1, i

b

a
, 0

)
e−it + c.c., (3.3)

where λ1 = (−1 + i)/
√

2Δ̂r̂ , c3 = is/[2(s cosh λ1 + λ1 sinh λ1)], and b/a is the ratio
between the minor and major axes of the tidal ellipse. When (3.2) is substituted into
the flow problem formulated in § 2 and terms of order ε are considered, the following
set of linear equations for u1, v1, w1 and p1 is derived:

iαu1 + iγ v1 +
∂w1

∂z
= 0, (3.4)

i(αu0 + γ v0)(u1, v1, w1) + w1

(
∂u0

∂z
,
∂v0

∂z
, 0

)

= −
(

iα, iγ,
∂

∂z

)
P1 + Δ̂

(
∂2

∂z2
− α2 − γ 2

)
(u1, v1, w1) (3.5)

subject to the following boundary conditions

∂

∂z
(u1, v1) = 0, −P1 + 2Δ̂

∂w1

∂z
= 0, w1 = 0 at z = 0, (3.6)
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Figure 2. Growth rate ΓR of the bottom perturbation predicted by the linear analysis and

plotted versus α and γ for r̂ = 110, Δ̂ = 2.87 × 10−3. Only positive isolines are displayed with
ΔΓR =0.5 × 10−4. (a) b/a =0.2, the maximum value of ΓR is located at (α, γ ) � (0.39, 0.0), (b)
b/a = 0.9, the maximum value of ΓR is located at (α, γ ) � (0.20, 0.0).

(
∂

∂z
− s

)
(u1, v1) = − ∂

∂z

(
∂

∂z
− s

)
(u0, v0), w1 = 0 at z = −h. (3.7)

The terms proportional to dA(t)/dt which would appear in (3.5) have been neglected
since the bottom time development takes place on the morphodynamic time scale T

which is much slower than the hydrodynamic time scale t . Moreover, because of the
large values assumed by the parameter r̂ for field conditions, it is possible to neglect
also the local acceleration term which is proportional to 1/r̂ and negligible in the
whole water column (Blondeaux & Vittori 2005). Therefore, in (3.4) and (3.5), the time
t is just a parameter and the solution procedure used by Blondeaux & Vittori (2005)
can be employed to determine (u1, v1, w1, p1). For field conditions, the parameter Δ̂

is of order 1/r̂ . However, the stress terms are retained in (3.5) because they are not
negligible within a boundary layer close to the bottom and the solution procedure
takes them into account without the need to split the fluid domain into an inviscid
region and a boundary layer. Then, the expansion of the sediment transport rate

(Qx, Qy) = (Qx0, Qy0) + εA(t)(Qx1, Qy1)e
i(αx+γy) + c.c. + O(ε2), (3.8)

can be readily evaluated by using (2.8) and the computed flow field. Then, it is possible
to evaluate the tide averaged values (Qx, Qy) following the procedure outlined in
Tambroni & Blondeaux (2008) which takes into account the discontinuous behaviour
of the sediment transport rate. Since the algebra, though straightforward, is lengthy
and tedious, we omit the details which are given in Vittori & Blondeaux (2008).
The equation which provides the time development of the amplitude of the bottom
perturbation follows from the sediment continuity:

dA(T )

dT
= i(αQx1 + γQy1)A(T ) = Γ (α, γ, r̂)A(T ), (3.9)

where, for a semi-diurnal tide and fixed values of the sea and sediment characteristics,
the growth rate Γ is a complex quantity which depends on the wavenumbers of
the harmonic component of the bottom perturbation and on the parameter r̂ . The
solution of (3.9),

A(T ) = A0 exp[Γ T ], (3.10)

shows that the growth or the decay of the bottom perturbation is controlled by
the real part ΓR of Γ . Figure 2(a) shows ΓR as a function of α and γ for
values of the parameters chosen in order to reproduce the climate and sediment
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characteristics of a typical site in the North Sea (ω∗ =1.41 × 10−4 s−1, U ∗
0 = 0.39 m s−1,

b/a = 0.2, h∗
0 = 25 m, z∗

r =2.5 cm, d∗ = 0.2 mm). The bed forms which tend to appear
are characterized by crests orthogonal to the major axis of the tidal ellipse since the
maximum value of ΓR is attained for vanishing values of γ . Moreover, the perturbation
component characterized by the maximum amplification rate, i.e. the component
which will dominate the bottom configuration for long times, is characterized by
α � 0.39. This wavenumber corresponds to a dimensional wavelength of about 400 m,
a value similar to the wavelengths observed in the field which fall between 100 m and
800 m (Hulscher 1996). The e-folding time, which provides the order of magnitude of
the morphodynamic process, turns out to be O(103) years. Even though the time scale
of sand wave development is very long (e.g. the field data of Knaapen & Hulscher
(2002) show that dredged sand waves take about 10 years to recover only partially),
the estimated time scale appears somewhat long. However, note that tidal currents
stronger than that presently considered (in the North Sea U ∗

0 can be larger than
1 m s−1) can decrease the order of magnitude of the e-folding time.

When the value of r̂ is decreased, a critical value r̂c is found such that for r̂ smaller
than r̂c, no sediment moves and the bottom perturbations do not grow. For the
chosen parameters, the value of r̂c turns out to be about 82 which corresponds to
U ∗

0 � 0.3 m s−1.

3.2. The perturbation time development: the weakly nonlinear regime

The linear analysis can explain the appearance of two-dimensional sand waves, but
an approach which neglects the interaction among different spatial components of
the bottom perturbation cannot model the formation of three-dimensional bottom
patterns as those displayed in figure 1. To understand the mechanism which gives rise
to three-dimensional sand waves, it is necessary to take into account nonlinear effects
and the interaction among the different components of the bottom perturbation. Let
us consider values of the parameters close to the critical conditions, i.e. let us assume
that the actual value of r̂ differs by a small amount from the critical value r̂c

r̂ = r̂c(1 + ε). (3.11)

The interaction between two- and three-dimensional harmonic components of the
initial perturbation is particularly strong when three components are considered
(Craik 1971). The first one corresponds to the most unstable component according
to the linear theory and is characterized by a longitudinal wavenumber α0 = α and
a transverse wavenumber γ0, which the results indicate would vanish. The other
two components have wavenumbers (α1, γ1) and (α2, γ2) such that (α0, γ0) = (α1, γ1)+
(α2, γ2). Under such circumstances, the nonlinear interaction which takes place both in
the hydrodynamic and morphodynamic problems, is such that the first perturbation
component interacting with the second one generates a sediment transport rate, the
divergence of which is spatially distributed as the third component of the bottom
perturbation, thus reinforcing it. Similarly, the second component interacting with the
third one reinforces the first component and so on. The symmetry of the problem
suggests considering (α1, γ1) = (α/2, γ ), (α2, γ2) = (α/2, −γ ). The above ideas lead us
to consider the following structure of the bottom perturbation:

h = 1 − ε

2∑
n=0

[
Ane

i(αnx+γny) + c.c.
]
+ O(ε2). (3.12)
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The results of the linear stability analysis suggest that, because of (3.11), the
growth rate of the bottom perturbation should be of order ε. Hence, the amplitudes
An(n = 0, 1, 2) of the perturbation components depend on the slow temporal scale
T = εT which describes the ‘slow’ growth (or decay) of bottom perturbations averaged
over the tide cycle. Then, the solution is expanded in the form

(u, v, w, p, Qx, Qy) =

(
u0, v0, 0,

√
g∗

ω∗
√

h∗
0

P0, Qx0, Qy0

)

+ ε

2∑
n=0

[
(u1,n, v1,n, w1,n, r̂P1,n, Qx1,n, Qy1,n)An(T)ei(αnx+γny) + c.c.

]
+ ε2

{[
(u2,12, v2,12, w2,12, r̂P2,12, Qx2,12, Qy2,12)A1(T)A2(T)ei(α0x+γ0y) + c.c.

]
+

[
(u2,02, v2,02, w2,02, r̂P2,02, Qx2,02, Qy2,02)A0(T)Ã2(T)ei(α1x+γ1y) + c.c.

]
+

[
(u2,01, v2,01, w2,01, r̂P2,01, Qx2,01, Qy2,01)A0(T)Ã1(T)ei(α2x+γ2y)

+ c.c.
]
+ o.t.

}
+ O(ε3), (3.13)

where a tilde denotes the complex conjugate of a complex quantity and o.t. stands
for other terms which are not relevant for the analysis.

Substituting (3.13) into the problem described in § 2 and equating likewise powers of
ε, the basic tidal current over a flat bed is readily determined at order ε0. The problem
at order ε can be solved following the procedure described in the previous section. As
already pointed out, because of (3.11), the perturbation components neither amplify
nor decay, and the sediment continuity equation reduces to dAn/dT = 0 and states
that the functions An do not depend on the fast morphodynamic time scale T .
Then, it is necessary to consider the problem at O(ε2) where nonlinear effects are
accounted for. Since the local acceleration terms are still neglected by assuming
that r̂ is sufficiently large (r̂ 	 1/ε), the hydrodynamic problems can be solved by
means of the same procedure as employed at order ε. Then, it is necessary to
consider the morphodynamic problem. Because of the chosen values of αn and γn, the
nonlinear interactions reproduce the fundamental components of the perturbation.
Moreover, since An depend on εT and because of (3.11), further contributions related
to the fundamental components of the bottom perturbation appear in the sediment
continuity equation at order ε2. These contributions are proportional to dAn/dT and
to An, respectively. Following Vittori & Blondeaux (1992) and Roos & Blondeaux
(2001), the following amplitude equations are obtained:

dA0

dT = a0A0 + b0A1A2,
dA1

dT = a1A1 + b1A0Ã2,
dA2

dT = a2A2 + b2A0Ã1. (3.14)

The constants an, bn depend on the parameters of the problem and can be determined
by means of straightforward algebra which is not described herein for brevity. The
values of an and bn, as function of the parameters of the problem can be found in
Vittori & Blondeaux (2008). The system (3.14) is solved numerically using the fourth-
order Runge–Kutta method. Even though analytical solutions of the system (3.14)
are presented for particular values of an, bn by Craik (1985) and references herein,
the general solution of the system (3.14) in closed form is not known. Therefore,
it is not possible to provide a general criterion to predict the appearance of three-
dimensional sand waves. In the present context, the coefficients an, bn turn out to be
real. Moreover, because of the symmetry of the problem, a1 = a2, b1 = b2 and A1 can
be assumed equal to A2. In order to study the formation of three-dimensional sand
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Figure 3. Time development of (a) A0 and (b) A1 = A2, predicted by the weakly nonlinear

analysis for r̂ = 110, b/a =0.2, Δ̂ = 2.87 × 10−3, α = 0.39 and different values of γ .

waves, the functions An will be assumed to be real, thus avoiding the analysis of
the solution of the system (3.14) in the complex plane. A steady solution of (3.14)
exists when a0a1/(b0b1) is positive. However, a straightforward linear analysis shows
that this steady solution is always unstable when a0 is positive which is the relevant
case here, since r̂ is larger than r̂c. Numerical experiments based on the numerical
integration of (3.14) do not allow precise quantitative conclusions to be drawn since
the solution depends on the initial values of An. To simplify the analysis of the
behaviour of the system, the initial amplitudes An(0) are assumed to be small and
the results described in the following have been obtained fixing An(0) = 0.001. Note
that the numerical integration of (3.14) is meaningful until the time development
of the bottom can be described by means of a perturbation approach, i.e. until the
amplitudes |Ai | remain significantly smaller than ε−1. The results obtained show that
the qualitative time development of Ai strongly depends on the ratio b/a, i.e. on the
ellipticity of the tidal ellipse. For small values of b/a, i.e. for nearly unidirectional
tidal currents, and for large values of γ , the nonlinear interaction among the different
components of the bottom waviness has no effect on the growth of the bottom
perturbation and A1 = A2 tend to vanish for large values of T. For small values of
γ , the amplitudes of the three-dimensional components grow explosively. However,
the fastest growth takes place for γ =0. In other words, even though only a fully
nonlinear approach can lead to a definitive conclusion, the present weakly nonlinear
analysis suggests that, for almost unidirectional tidal currents, the sand waves which
tend to appear are two-dimensional. An example of the results is shown in figure 3
which considers the same dimensionless parameters as those of figure 2(a) (r̂ = 110,
b/a = 0.2, Δ =2.87 × 10−3). Since r̂ = 110 and r̂c =82, it follows that ε = 0.34.

Three-dimensional bottom patterns are triggered by nonlinear effects when the
value of b/a is increased, i.e. when almost circular tides are considered. Figure 2(b)
shows the amplification rate ΓR for the same values of the parameters as those of
figure 2(a) but for b/a = 0.9. The value of αc is now equal to about 0.2 and the time
development of A0 and A1 =A2 is plotted for different values of γ in figure 4. Also
in this case, the results obtained show an explosive growth of the three-dimensional
components of the bottom perturbation. However, the fastest growth is now observed
for a finite value of the transverse wavelength, i.e. when γ = γmax is equal to about
0.25. Therefore, the bottom forms which are predicted on the basis of the present
weakly nonlinear analysis are characterized by a longitudinal wavelength equal to
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Figure 4. Time development of (a) A0 and (b) A1 = A2, predicted by the weakly nonlinear

analysis for r̂ = 110, b/a =0.9, Δ̂= 2.87 × 10−3, α = 0.2 and different values of γ .
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Figure 5. Sketch of the bottom topography predicted by the analysis when the growth

of three-dimensional bottom perturbations is triggered (r̂ = 110, b/a = 0.9, Δ̂= 2.87 × 10−3,
α = 0.2, γ = 0.25.

2πh∗
0/αc which is close to 30h∗

0 and a transverse wavelength equal to 2πh∗
0/γmax which

is close to 25h∗
0. The resulting bottom topography is sketched in figure 5. Further

results, which have been obtained for different values of the parameters and are not
shown herein for brevity, indicate the key role played by the ratio b/a in the formation
of three-dimensional sand waves and suggest that three-dimensional bottom forms
tend to appear only when b/a is close to one, i.e. for almost circular tides.

4. Conclusions
The investigation of the weakly nonlinear interaction among a triad of resonant

harmonic components of a random bottom perturbation has shown that a stability
analysis of the flat sea bed forced by tidal currents can explain the appearance
of three-dimensional morphological patterns similar to the three-dimensional sand
waves observed in the field. In particular, it has been shown that three-dimensional
bed forms tend to appear when the ratio between the minor and major axes of the
tide ellipse is close to one, i.e. when the tide is almost circular. It is worth pointing out
that the present analysis considers only weakly nonlinear effects and therefore it can
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describe only the initial stages of the growth of three-dimensional sand waves which
subsequently might be modified by fully nonlinear effects. An exhaustive quantitative
investigation of the phenomenon in the parameter space is beyond the aims of the
present work since the analysis is based on a simple idealized model and significant
refinements of the analysis (e.g. a refined description of turbulence characteristics and
of sediment transport) are necessary to obtain accurate quantitative predictions of
the bottom forms and of the values of the parameters which lead to their appearance.
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